Extensions 1→N→G→Q→1 with N=C23⋊C4 and Q=D5

Direct product G=N×Q with N=C23⋊C4 and Q=D5
dρLabelID
D5×C23⋊C4408+D5xC2^3:C4320,370

Semidirect products G=N:Q with N=C23⋊C4 and Q=D5
extensionφ:Q→Out NdρLabelID
C23⋊C41D5 = C53C2≀C4φ: D5/C5C2 ⊆ Out C23⋊C4408+C2^3:C4:1D5320,29
C23⋊C42D5 = C23.2D20φ: D5/C5C2 ⊆ Out C23⋊C4408+C2^3:C4:2D5320,32
C23⋊C43D5 = C23⋊D20φ: D5/C5C2 ⊆ Out C23⋊C4408+C2^3:C4:3D5320,368
C23⋊C44D5 = C23.5D20φ: D5/C5C2 ⊆ Out C23⋊C4808-C2^3:C4:4D5320,369
C23⋊C45D5 = C23⋊C45D5φ: trivial image808-C2^3:C4:5D5320,367

Non-split extensions G=N.Q with N=C23⋊C4 and Q=D5
extensionφ:Q→Out NdρLabelID
C23⋊C4.1D5 = (C2×C20).D4φ: D5/C5C2 ⊆ Out C23⋊C4808-C2^3:C4.1D5320,30
C23⋊C4.2D5 = C23.D20φ: D5/C5C2 ⊆ Out C23⋊C4808-C2^3:C4.2D5320,31

׿
×
𝔽